M(3-4m)=4(8-m^2)

Simple and best practice solution for M(3-4m)=4(8-m^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for M(3-4m)=4(8-m^2) equation:



(3-4M)=4(8-M^2)
We move all terms to the left:
(3-4M)-(4(8-M^2))=0
We add all the numbers together, and all the variables
-(4(8-M^2))+(-4M+3)=0
We get rid of parentheses
-(4(8-M^2))-4M+3=0
We calculate terms in parentheses: -(4(8-M^2)), so:
4(8-M^2)
We multiply parentheses
-4M^2+32
Back to the equation:
-(-4M^2+32)
We get rid of parentheses
4M^2-4M-32+3=0
We add all the numbers together, and all the variables
4M^2-4M-29=0
a = 4; b = -4; c = -29;
Δ = b2-4ac
Δ = -42-4·4·(-29)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{30}}{2*4}=\frac{4-4\sqrt{30}}{8} $
$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{30}}{2*4}=\frac{4+4\sqrt{30}}{8} $

See similar equations:

| 10(x+4)–3=14x+1 12(10x+15)–32=2x+6+3x | | 4v-15=v+42 | | (5+n)12=72 | | y+38=18-4y+40 | | (65x-12)=43x+10 | | 5x-2(4x-1)=23 | | x+4=3x-32 | | 13w=6w+28 | | 17s+16=7s+36 | | 5w-4=6w-23 | | 10v=7v+30 | | 7x=155 | | 4+16=10x | | 30+b+1=15-26+49 | | H=-9t^2-15t+100 | | 2y-20=y-1 | | x+48=13x-48 | | c4−5=4 | | 133=2x-7 | | 6v+1=9v-5 | | 3u=4u-14 | | 5x+3=3(5x-4)-10x | | 16w+10=4w+34 | | 5×(x+4)=-7×(x-4)) | | x+8=2*x | | -10-5(2-3p)=3(p-4)-16 | | 4^x-5^x+1=-109 | | 6x+4=4x=10 | | 2x^2-19x=10 | | z+17=18 | | 78=x+15 | | 7x−3=3x+2 |

Equations solver categories